4,513 research outputs found

    Finite-size critical scaling in Ising spin glasses in the mean-field regime

    Get PDF
    We study in Ising spin glasses the finite-size effects near the spin-glass transition in zero field and at the de Almeida-Thouless transition in a field by Monte Carlo methods and by analytical approximations. In zero field, the finite-size scaling function associated with the spin-glass susceptibility of the Sherrington-Kirkpatrick mean-field spin-glass model is of the same form as that of one-dimensional spin-glass models with power-law long-range interactions in the regime where they can be a proxy for the Edwards-Anderson short-range spin-glass model above the upper critical dimension. We also calculate a simple analytical approximation for the spin-glass susceptibility crossover function. The behavior of the spin-glass susceptibility near the de Almeida-Thouless transition line has also been studied, but here we have only been able to obtain analytically its behavior in the asymptotic limit above and below the transition. We have also simulated the one-dimensional system in a field in the non-mean-field regime to illustrate that when the Imry-Ma droplet length scale exceeds the system size one can then be erroneously lead to conclude that there is a de Almeida-Thouless transition even though it is absent.Comment: 10 pages, 7 figure

    Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states

    Full text link
    Based on the assumption that the receiver Bob can apply any unitary transformation, Horodecki {\it et al.} [Phys. Lett. A {\bf 222}, 21 (1996)] proved that any mixed two spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation. Here, we further show that any X state which violates the Bell-CHSH inequality can also be used for nonclassical teleportation even if Bob can only perform the identity or the Pauli rotation operations. Moreover, we showed that the maximal difference between the two average fidelities achievable via Bob's arbitrary transformations and via the sole identity or the Pauli rotation is 1/9.Comment: 5 pages, to be published in "Quantum Information Processing

    Non-commutative field theory approach to two-dimensional vortex liquid system

    Full text link
    We investigate the non-commutative (NC) field theory approach to the vortex liquid system restricted to the lowest Landau level (LLL) approximation. NC field theory effectively takes care of the phase space reduction of the LLL physics in a ⋆\star-product form and introduces a new gauge invariant form of a quartic potential of the order parameter in the Ginzburg-Landau (GL) free energy. This new quartic interaction coupling term has a non-trivial equivalence relation with that obtained by Br\'ezin, Nelson and Thiaville in the usual GL framework. The consequence of the equivalence is discussed.Comment: Add vortex lattice formation, more references, and one autho

    Liquid-to-liquid phase transition in pancake vortex systems

    Full text link
    We study the thermodynamics of a model of pancake vortices in layered superconductors. The model is based on the effective pair potential for the pancake vortices derived from the London approximation of a version of the Lawrence-Doniach model which is valid for extreme type-II superconductors. Using the hypernetted-chain (HNC) approximation, we find that there is a temperature below which multiple solutions to the HNC equations exist. By explicitly evaluating the free energy for each solution we find that the system undergoes a first-order transition between two vortex liquid phases. The low-temperature phase has larger correlations along the field direction than the high-temperature phase. We discuss the possible relation of this phase transition to the liquid-to-liquid phase transition recently observed in Y-Ba-Cu-O superconductors in high magnetic fields in the presence of disorder.Comment: 7 pages, 6 figure

    Memory consolidation in the cerebellar cortex

    Get PDF
    Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage

    Digital transformations and the archival nature of surrogates

    Get PDF
    Large-scale digitization is generating extraordinary collections of visual and textual surrogates, potentially endowed with transcendent long-term cultural and research values. Understanding the nature of digital surrogacy is a substantial intellectual opportunity for archival science and the digital humanities, because of the increasing independence of surrogate collections from their archival sources. The paper presents an argument that one of the most significant requirements for the long-term access to collections of digital surrogates is to treat digital surrogates as archival records that embody traces of their fluid lifecycles and therefore are worthy of management and preservation as archives. It advances a theory of the archival nature of surrogacy founded on longstanding notions of archival quality, the traces of their source and the conditions of their creation, and the functional ‘‘work of the archive.’’ The paper presents evidence supporting a ‘‘secondary provenance’’ derived from re-digitization, re-ingestion of multiple versions, and de facto replacement of the original sources. The design of the underlying research that motivates the paper and summary findings are reported separately. The research has been supported generously by the US Institute of Museum and Library Services.Institute for Museum and Library ServicesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111825/1/J26 Conway Digital Transformations 2014-pers.pdfDescription of J26 Conway Digital Transformations 2014-pers.pdf : Main articl
    • …
    corecore